Belgeler (Dökümantasyon) ======================== .. raw:: html
mxnetpytorchtensorflow
.. raw:: html
Bu kitabın uzunluğundaki kısıtlamalar nedeniyle, her bir MXNet işlevini ve sınıfını tanıtamayız (ve muhtemelen bizim yapmamızı siz de istemezsiniz). API (Application Programming Interface - Uygulama Programlama Arayüzü) belgeleri ve ek öğreticiler (tutorial) ve örnekler, kitabın ötesinde pek çok belge sağlar. Bu bölümde size MXNet API'sini keşfetmeniz için biraz rehberlik sunuyoruz. .. raw:: html
.. raw:: html
Bu kitabın uzunluğundaki kısıtlamalar nedeniyle, her bir PyTorch işlevini ve sınıfını tanıtamayız (ve muhtemelen bizim yapmamızı siz de istemezsiniz). API (Application Programming Interface - Uygulama Programlama Arayüzü) belgeleri ve ek öğreticiler (tutorial) ve örnekler kitabın ötesinde pek çok belge sağlar. Bu bölümde size PyTorch API'sini keşfetmeniz için biraz rehberlik sunuyoruz. .. raw:: html
.. raw:: html
Bu kitabın uzunluğundaki kısıtlamalar nedeniyle, her bir TensorFlow işlevini ve sınıfını tanıtamayız (ve muhtemelen bizim yapmamızı siz de istemezsiniz). API (Application Programming Interface - Uygulama Programlama Arayüzü) belgeleri ve ek öğreticiler (tutorial) ve örnekler kitabın ötesinde pek çok belge sağlar. Bu bölümde size TensorFlow API'sini keşfetmeniz için biraz rehberlik sunuyoruz. .. raw:: html
.. raw:: html
Bir Modüldeki Tüm İşlevleri ve Sınıfları Bulma ---------------------------------------------- Bir modülde hangi fonksiyonların ve sınıfların çağrılabileceğini bilmek için ``dir`` fonksiyonunu çağırırız. Örneğin, rastgele sayılar oluşturmak için modüldeki tüm özellikleri sorgulayabiliriz: .. raw:: html
mxnetpytorchtensorflow
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python from mxnet import np print(dir(np.random)) .. raw:: latex \diilbookstyleoutputcell .. parsed-literal:: :class: output ['__all__', '__builtins__', '__cached__', '__doc__', '__file__', '__loader__', '__name__', '__package__', '__spec__', '_mx_nd_np', 'beta', 'chisquare', 'choice', 'exponential', 'gamma', 'gumbel', 'logistic', 'lognormal', 'multinomial', 'multivariate_normal', 'normal', 'pareto', 'power', 'rand', 'randint', 'randn', 'rayleigh', 'shuffle', 'uniform', 'weibull'] .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python import torch print(dir(torch.distributions)) .. raw:: latex \diilbookstyleoutputcell .. parsed-literal:: :class: output ['AbsTransform', 'AffineTransform', 'Bernoulli', 'Beta', 'Binomial', 'CatTransform', 'Categorical', 'Cauchy', 'Chi2', 'ComposeTransform', 'ContinuousBernoulli', 'CorrCholeskyTransform', 'CumulativeDistributionTransform', 'Dirichlet', 'Distribution', 'ExpTransform', 'Exponential', 'ExponentialFamily', 'FisherSnedecor', 'Gamma', 'Geometric', 'Gumbel', 'HalfCauchy', 'HalfNormal', 'Independent', 'IndependentTransform', 'Kumaraswamy', 'LKJCholesky', 'Laplace', 'LogNormal', 'LogisticNormal', 'LowRankMultivariateNormal', 'LowerCholeskyTransform', 'MixtureSameFamily', 'Multinomial', 'MultivariateNormal', 'NegativeBinomial', 'Normal', 'OneHotCategorical', 'OneHotCategoricalStraightThrough', 'Pareto', 'Poisson', 'PowerTransform', 'RelaxedBernoulli', 'RelaxedOneHotCategorical', 'ReshapeTransform', 'SigmoidTransform', 'SoftmaxTransform', 'SoftplusTransform', 'StackTransform', 'StickBreakingTransform', 'StudentT', 'TanhTransform', 'Transform', 'TransformedDistribution', 'Uniform', 'VonMises', 'Weibull', 'Wishart', '__all__', '__builtins__', '__cached__', '__doc__', '__file__', '__loader__', '__name__', '__package__', '__path__', '__spec__', 'bernoulli', 'beta', 'biject_to', 'binomial', 'categorical', 'cauchy', 'chi2', 'constraint_registry', 'constraints', 'continuous_bernoulli', 'dirichlet', 'distribution', 'exp_family', 'exponential', 'fishersnedecor', 'gamma', 'geometric', 'gumbel', 'half_cauchy', 'half_normal', 'identity_transform', 'independent', 'kl', 'kl_divergence', 'kumaraswamy', 'laplace', 'lkj_cholesky', 'log_normal', 'logistic_normal', 'lowrank_multivariate_normal', 'mixture_same_family', 'multinomial', 'multivariate_normal', 'negative_binomial', 'normal', 'one_hot_categorical', 'pareto', 'poisson', 'register_kl', 'relaxed_bernoulli', 'relaxed_categorical', 'studentT', 'transform_to', 'transformed_distribution', 'transforms', 'uniform', 'utils', 'von_mises', 'weibull', 'wishart'] .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python import tensorflow as tf print(dir(tf.random)) .. raw:: latex \diilbookstyleoutputcell .. parsed-literal:: :class: output ['Algorithm', 'Generator', '__builtins__', '__cached__', '__doc__', '__file__', '__loader__', '__name__', '__package__', '__path__', '__spec__', '_sys', 'all_candidate_sampler', 'categorical', 'create_rng_state', 'experimental', 'fixed_unigram_candidate_sampler', 'gamma', 'get_global_generator', 'learned_unigram_candidate_sampler', 'log_uniform_candidate_sampler', 'normal', 'poisson', 'set_global_generator', 'set_seed', 'shuffle', 'stateless_binomial', 'stateless_categorical', 'stateless_gamma', 'stateless_normal', 'stateless_parameterized_truncated_normal', 'stateless_poisson', 'stateless_truncated_normal', 'stateless_uniform', 'truncated_normal', 'uniform', 'uniform_candidate_sampler'] .. raw:: html
.. raw:: html
Genel olarak, ``__`` (Python'daki özel nesneler) ile başlayan ve biten işlevleri veya tek bir ``_`` ile başlayan işlevleri (genellikle dahili işlevler) yok sayabiliriz. Kalan işlev veya özellik adlarına bağlı olarak bu modülün tekdüze dağılım (``uniform``), normal dağılım (``normal``) ve çok terimli dağılımdan (``multinomial``) örnekleme dahil, bu modülün rastgele sayılar oluşturmak için çeşitli yöntemler sunduğunu tahmin edebiliriz. Belli İşlevlerin ve Sınıfların Kullanımını Bulma ------------------------------------------------ Belirli bir işlevin veya sınıfın nasıl kullanılacağına ilişkin daha özel talimatlar için ``help`` (yardım) işlevini çağırabiliriz. Örnek olarak, tensörlerin ``ones`` işlevi için kullanım talimatlarını inceleyelim. .. raw:: html
mxnetpytorchtensorflow
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python help(np.ones) .. raw:: latex \diilbookstyleoutputcell .. parsed-literal:: :class: output Help on function ones in module mxnet.numpy: ones(shape, dtype=, order='C', ctx=None) Return a new array of given shape and type, filled with ones. This function currently only supports storing multi-dimensional data in row-major (C-style). Parameters ---------- shape : int or tuple of int The shape of the empty array. dtype : str or numpy.dtype, optional An optional value type. Default is `numpy.float32`. Note that this behavior is different from NumPy's `ones` function where `float64` is the default value, because `float32` is considered as the default data type in deep learning. order : {'C'}, optional, default: 'C' How to store multi-dimensional data in memory, currently only row-major (C-style) is supported. ctx : Context, optional An optional device context (default is the current default context). Returns ------- out : ndarray Array of ones with the given shape, dtype, and ctx. Examples -------- >>> np.ones(5) array([1., 1., 1., 1., 1.]) >>> np.ones((5,), dtype=int) array([1, 1, 1, 1, 1], dtype=int64) >>> np.ones((2, 1)) array([[1.], [1.]]) >>> s = (2,2) >>> np.ones(s) array([[1., 1.], [1., 1.]]) .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python help(torch.ones) .. raw:: latex \diilbookstyleoutputcell .. parsed-literal:: :class: output Help on built-in function ones in module torch: ones(...) ones(*size, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor Returns a tensor filled with the scalar value `1`, with the shape defined by the variable argument :attr:`size`. Args: size (int...): a sequence of integers defining the shape of the output tensor. Can be a variable number of arguments or a collection like a list or tuple. Keyword arguments: out (Tensor, optional): the output tensor. dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. Default: if ``None``, uses a global default (see :func:`torch.set_default_tensor_type`). layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. Default: ``torch.strided``. device (:class:`torch.device`, optional): the desired device of returned tensor. Default: if ``None``, uses the current device for the default tensor type (see :func:`torch.set_default_tensor_type`). :attr:`device` will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. requires_grad (bool, optional): If autograd should record operations on the returned tensor. Default: ``False``. Example:: >>> torch.ones(2, 3) tensor([[ 1., 1., 1.], [ 1., 1., 1.]]) >>> torch.ones(5) tensor([ 1., 1., 1., 1., 1.]) .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python help(tf.ones) .. raw:: latex \diilbookstyleoutputcell .. parsed-literal:: :class: output Help on function ones in module tensorflow.python.ops.array_ops: ones(shape, dtype=tf.float32, name=None) Creates a tensor with all elements set to one (1). See also `tf.ones_like`, `tf.zeros`, `tf.fill`, `tf.eye`. This operation returns a tensor of type `dtype` with shape `shape` and all elements set to one. >>> tf.ones([3, 4], tf.int32) Args: shape: A `list` of integers, a `tuple` of integers, or a 1-D `Tensor` of type `int32`. dtype: Optional DType of an element in the resulting `Tensor`. Default is `tf.float32`. name: Optional string. A name for the operation. Returns: A `Tensor` with all elements set to one (1). .. raw:: html
.. raw:: html
Dökümantasyondan, ``ones`` işlevinin belirtilen şekle sahip yeni bir tensör oluşturduğunu ve tüm öğeleri 1 değerine ayarladığını görebiliriz. Mümkün oldukça, yorumunuzu onaylamak için hızlı bir test yapmalısınız: .. raw:: html
mxnetpytorchtensorflow
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python np.ones(4) .. raw:: latex \diilbookstyleoutputcell .. parsed-literal:: :class: output array([1., 1., 1., 1.]) .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python torch.ones(4) .. raw:: latex \diilbookstyleoutputcell .. parsed-literal:: :class: output tensor([1., 1., 1., 1.]) .. raw:: html
.. raw:: html
.. raw:: latex \diilbookstyleinputcell .. code:: python tf.ones(4) .. raw:: latex \diilbookstyleoutputcell .. parsed-literal:: :class: output .. raw:: html
.. raw:: html
Jupyter not defterinde, belgeyi başka bir pencerede görüntülemek için ``?`` kullanabiliriz. Örneğin, ``list?``, ``help(list)`` ile neredeyse aynı olan içerik üretecek ve onu yeni bir tarayıcı penceresinde görüntüleyecektir. Ek olarak, ``list??`` gibi iki soru işareti kullanırsak, işlevi uygulayan Python kodu da görüntülenecektir. Özet ---- - Resmi belgeler, bu kitabın dışında pek çok açıklama ve örnek sağlar. - Jupyter not defterlerinde ``dir`` ve ``help`` işlevlerini veya ``?`` ve ``??`` işlevlerini çağırarak bir API'nin kullanımına ilişkin belgelere bakabiliriz. Alıştırmalar ------------ 1. Derin öğrenme çerçevesindeki herhangi bir işlev veya sınıf için belgelere (dökümantasyon) bakın. Belgeleri çerçevenin resmi web sitesinde de bulabilir misiniz? .. raw:: html
mxnetpytorchtensorflow
.. raw:: html
`Tartışmalar `__ .. raw:: html
.. raw:: html
`Tartışmalar `__ .. raw:: html
.. raw:: html
`Tartışmalar `__ .. raw:: html
.. raw:: html